五年级数学教学反思

时间:2025-05-13 13:25:52
五年级数学教学反思

五年级数学教学反思

作为一名到岗不久的人民教师,教学是重要的任务之一,借助教学反思我们可以快速提升自己的教学能力,来参考自己需要的教学反思吧!下面是小编为大家整理的五年级数学教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。

五年级数学教学反思1

每一次课都是我与学生的一段共同经历,更是我的一次难得的成长历程,而在这个成长过程中,对教材的不熟悉则是我心中最大的痛。

这一节课中,读教材的过程中,我有两个困惑:第一是三下分数的初步认识是否需要课前再次复习。第二我创设的情境能否帮助学生体会同一个分数对应整体不同,所表示的具体数量不同?有没有更好的情境帮助学生来理解。

最后一个情境还没有来得及展示就已经下课是今天这节课的遗憾,其实就是书中的第四题,我是想让学生体会,一个量的1/4比一个量的3/4是大还是小,若这个总量一样,那么一个量的1/4比一个量的3/4小,若这个总量不一样,那么一个量的1/4比一个量的3/4就不一定了。

今后的时间我会花更多的时间来读教材,读教参,读课标,不断地来充实自己,使自己的数学语言更严谨,数学知识更丰富,数学理念更前瞻。

五年级数学教学反思2

《通分》这一模块的主要内容是理解通分的意义,能够对异分母进行通分,为下一步进行异分母分数加减法打下基础。学生已经学习过了如何求两个数的最小公倍数,在通分时会正确应用最小公倍数的方法找到两个数的公分母。进而,对两个异分母分数进行通分。

首先,由一些同分母分数和同分子分数的大小比较引出当两个分数的分母如果不相同该怎样进行大小的比较,从而引起学生对学习通分的学习兴趣,可以让学生通过小组学习来解决,师生共同总结出如果把这些分母不相同的分数转化为分母相同的分数那么再进行大小的比较就会比较方便。引出通分的概念:把异分母分数转化成大小相等的同分母分数的过程叫做通分。同时,引导学生找出通分时怎样确定同分母分数的分母,用什么数做公分母会算起来会比较简便,学生经过小组讨论会得到用异分母分数的最小公倍数的方法就可以找到公分母。

理解了通分的意义,并掌握了通分的方法后,通过一系列的练习,让学生熟练地把两个异分母分数通分,并进一步对两个以上的异分母分数进行通分,这里可以放手让学生在练习时大胆尝试。

五年级数学教学反思3

《轴对称图形》的教学反思

对称是一种最基本的图形变换,是学习空间与图形知识的必要基础,对于帮助学生建立空间观念,培养学生的空间想象力有着不可忽视的作用。

本册第一次教学轴对称图形,教材中安排了形式多样的操作活动,在本节课的教学中,我结合教材的特点,设计了三次操作活动,让学生在动手操作中逐步体验轴对称图形的基本特征。

一、创设情境教学,请会折叠衣服的同学上台来展示一下叠衣服的方法。从而引出课题。接着1、出示轴对称物体:天安门、飞机、奖杯、让学生观察它们有什么共同特点?学生观察发现,它们的两边都是一样的。2、剪小树:通过不同剪法师生共同评价得出这些图形两边都一样的,所以先把纸对折,然后再剪,剪定后再展开,就是这棵小树了。

这是本节课第一次操作活动,安排在学生观察生活中的对称现象后,目的在于让学生在操作中初步感知轴对称现象。学生这次操作活动看似一次无目的操作活动,但要一棵小树甚至一个漂亮的窗花,不去寻找规律,也是非常困难的,通过学生的交流,能初步感知到两边一样的图形可以对折起来再剪,这就是轴对称图形特征的初步感知。

二、动手画一画,折一折,通过把同学们看到的物体画下来得到下面的图形(天安门、飞机、奖杯等)进行分组操作讨论,得出结论——图形对称后,两边完全重合了,从而得出什么样的图形是轴对称图形。

这是本节课的第二次操作活动,安排在学生对轴对称图形的特征有了初步感知之后。学生此次操作是由目的性,有导向性的操作,目的是在操作活动过程中,探究图形对折后折痕两边的部分完全重合这一基本特征,在此基础上解释出轴对称图形的概念。

三、想办法做出以各轴对称图形、并分组展示自己的作品。

这是本节课达三次操作安排,且是在学生对轴对称图形有较为正确系统的认识之后,意在操作活动中巩固深化对轴对称图形的认识,学生这次操作活动手段是多样的,作品也是丰富多彩的。

三次的操作活动目的不同,所产生的成效也截然不同,学生在这次活动中,通过有序、有层次的操作更加深对轴对称图形特征以认识,充分概念之轴对称图形的基本特征。

本节课最大感受是由于课前准备充分,所有的练习和操作活动较为自然的串联在参观的情景中,课堂结构紧凑,学生兴趣浓烈,让学生用不同的方式、以不同的角度体会轴对称图形的特征。

《因数与倍数》的教学反思

《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。(1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。(2)“约数”一词被“因数”所取代。这样的变化原因何在?我认真研读教材,通过学习了解到以下信息:签于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,本套教材中删去了“整除”的数学化定义,而是借助整除的模式na=b直接引出因数和倍数的概念。

虽然学生已接触过整除与有余数的除法,但我班学生对“整除”与“除尽”的内涵与外延并不清晰。因此在教学时,补充了两道判断题请学生辨析:

11÷2=5……1。问:11是2的倍数吗?为什么?因为5×0.8=4,所以5和0.8是4的因数,4是5和0.8的倍数,对吗?为什么?

特别是第2小题极具价值。价值不仅体现在它帮助学生通过辨析明确了在研究因数和倍数时,我们所说的数都是指整数(一般不包括0),及时弥补了未进行整除概念教学的知识缺陷,还通过此题对“因数”与乘法算式名称中的“因数”,倍数与倍进行了对比。

《合数与质数》的教学反思

在《合数与质数》的教学中,我跳出了教材的束缚,体现以“以人发展为本”的新课程教学理念,尊重学生,信任学生,敢于放手让学生自己去学习。在整个教学过程中,学生能从已有的知识经验的实际状态出发,通过操作、讨论、归纳,经历了知识的发现和探究过程,从中体验了解决问题的喜悦或失败的情感。

一、学生参与面广,学习兴趣浓。

新课程教学标准要求我们教学中要“让学生经历数学知识的形成与应用过程。”因此,在教学中,我注重面向全体学生,使学生在愉悦的气氛中学习,唤起学生强烈的求知欲望。如:让学生利用学具去摆拼,用“2、3、4……12个小正方形分别可以拼成几种长方形的方法去体验质数 ……此处隐藏14853个字……人学有价值的数学,”这是新课标的一个基本理念。本次试题依据新课标的要求,从学生认识的生活索取题材,把枯燥的知识生活化、情景化,通过填空、选择、解决问题等形式让学生从中体验、感受学习数学知识的必要性、实用性和应用价值。

3、重视各种能力的考查。本次试题通过不同的数学知识载体,全面考查了学生的计算能力,观察和判定能力、操作能力以及综合运用知识解决生活问题的能力。

4、试题量适中,题型多样,内容丰富,有很强的针对性。特殊注意了与学生实际生活的联系,渗透了结合情境解决问题的思想,让养成良好的思想品质,对学生的发展有一定的导向性。

5、试题具有一定的拓展性和灵活性,学生留有一定的思维空间,让学生利用所学的知识解决碰到的一些问题。如:计算部分的脱式计算等。五年级期中数学试题

二、学生的考试成绩及情况,我在学校要求的登记本上已做了分析与登记,这里就不在做具体的说明。

三、改进措施:

1、学生的口算能力有待于加强,提高正确度。

2、在教学中,有意识的练习、提高学生的思维能力。提高学生运用数学知识解决问题的能力。

3、针对学生分析理解能力较差的实际情况,在今后的解决实际问题教学中培养学生从多方面、多角度去思考,把所学的知识应用于实际中。教育他们要灵活应用所学知识解决生活中的实际问题。

4、根据学生的不同特点对他们因材施教,从而提高学生的整体素质。

5、加强对分数知识的拓展。加强学生的学习能力。

五年级数学教学反思13

《密铺》一课通过学生的动手操作,在学生已有经验的基础上,进一步理解了密铺的含义,了解了可以密铺的图形形状,认识图形密铺知识在生活中的应用,增强了学生应用数学的意识。

在本课的教学过程中,教师引导学生联系生活实际、欣赏密铺图案的构成后,通过做一做,先让学生自己将一张白纸对折3 次,在对折后的折纸上任意画一个平等四边形,并把这个平等四边形剪下来。这样就得到了8个形状相同、大小也相同的平行四边形。然后再让学生通过拼一拼,发现平行四边形可以密铺平面。接下来讨论让学生三角形和梯形能否密铺平面,小组讨论交流后很容易达成共识,即任意两个相同的三角形或者梯形都能拼成一个平行四边形,而平行四边形是可以密铺的,所以三角形和梯形也可以密铺平面。

在学生直观上认识到长方形、正方形、平行四边形、梯形等四边形都可以密铺平面以后,教师引导学生通过观察,归纳出可以密铺平面的图形的特点,即同一个顶点的各个拼接图形的角的和为360度。学生在归纳这一点时稍有困难,表明分析与概括的能力还应该进一步加强。

在明确了密铺的条件后,学生便会自主地设计密铺的图案,并能以此为依据进行一些平面图形能否密铺平面的判定,比如说绝大多数学生可以根据正五边形、正八边形和圆的特征,先断定这几种图形不能密铺平面,对一些理解上有困难的学生,则可以从动手操作中得出结论。

在拓展性的学习中,多数学生还以生活经验为基础,以平日的观察为原形,设计出了以一种或者几种图形组成的密铺图案,显示出一定的审美观念。

五年级数学教学反思14

《数松果》是北师大版第二单元《乘法口诀(一)》的第一课时。本课的重点是让学生理解 5 的乘法口诀的形成过程;难点是怎样去熟记并利用乘法口诀来解决生活中的实际问题。

根据教学要求,结合教材的特点,为了更好地突出重点,突破难点,完成教学任务。

1 、情景教学法。首先让学生在采松果的情景图里发现数学信息、提出数学问题,进而激发学生解决一共有多少个松果数学问题的兴趣。

2 、游戏教学法。即是新课改的教学理念做中学、玩中学的体现。因为小学生学习活动不再是教师的说教,应该更多的时间是在学生自主探索的过程中。这样的教学,更能体现了学生是学习数学的主人,教师是数学学习的组织者、引导者和合作者的功能。 如在熟记口诀时采用了对口今、开火车、手指等游戏,使学生乐记且又记得牢。

五年级数学教学反思15

本节内容旨在培养学生会利用已有知识、依据实际情况给出较经济的方案,培养学生的数学应用的意识,同时提高学生分析问题和解决问题的能力;感受教学与生活的联系。这部分专题活动中设计了两个问题,实际上都是解决问题策略的选择,即购买门票的策略和租车的策略。现仅将“购买门票的策略”这节课上出现的情景及问题展现出来,以供大家讨论与借鉴。

问题1中解决问题的关键是了解每种优惠方案的含义,然后通过计算总钱数解决。第一幅情景图中是4个大人,1个小孩,第二幅情景图中是4个小孩,2个大人。经过计算得出结论,一般情况下大人多、小孩少时,人数又够买团体票,买团体票相对便宜;当小孩多,大人少,同样够买团体票的情况下,大人买成人票,小孩买儿童票相对便宜。通过这两种不同情境的计算比较,学生结合具体情况选择不同的解决问题的策略,使他们感受到了数学与生活的联系。

但是让学生完成“试一试”时出现了插曲。当多数学生按A、B两种方案完成后,认为B种方案省钱时,有一个学生犹犹豫豫地举起手。当让他发言时,他吞吞吐吐地说自己还有一种更省钱的方法。这是我马上鼓励他说出自己的想法。该生受到鼓励后,便大胆的说:“我认为6个大人超过了买团体票的人数了,所以我认为 6个大人买团体票是600元,而3个小孩买儿童票花120元,总共才720元,远低于B种方案的900元。”他一口气说完自己的想法。这时,他及全班同学都用疑惑的眼光看着我。此时我没有让其他孩子讨论这样做是否正确,而是不失时机地肯定了该生,并且加以表扬,而后才让学生讨论这样做是否符合题意。讨论后学生一致认为这样做是符合题意的。此后,学生在完成第60页“练一练”第一题时,也都很顺利。正当我小结完本课,自认为很圆满时,一个孩子举起了自己的手。我问他还有哪儿不明白?他说如果是“4个大人,3个小孩”时,该怎样算?当时我只认为他没听懂,便指名帮他解决。但他说:“如果把1个孩子和4个大人合买团体票,而2个孩子买儿童票会更便宜。”他这种想法是我备课时没有考虑到的。这也让我感到犹豫。如果肯定势必将本课变得复杂了;如果不肯定他的想法,但这并不违背本节课的宗旨。本来自以为完满的一节课,去又让这个孩子打了个大大问号。

回到办公室,我马上打开教科书,再细细看过之后,惊讶的发现教材的确是在有意回避着此问题。此时我感到郁闷,惭愧自己的对教材挖掘得不够。

回过头再想想,既然我们的目的是教给孩子有用的数学,使他们能运用所学数学知识策略性的解决实际生活中的问题,在编写教材时就不应该回避问题。这之后,我与其他教师也讨论过此问题,但没有一个具有说服力的说法。但就我个人而言,我认为既然这节课的目的是教给学生运用所学数学知识,策略性地解决生活中的问题,而本节课本身强调的就是“策略性”,所以我想应该肯定该生的想法。虽然这种想法有时不合情理,但这种做法生活中是有可能出现的。既然有可能出现它就应该属于我们讨论的范畴。当然,不管你以什么样的方式,应该在教材上出现。我的这种想法其实自己也考虑得不十分成熟,但我想还是抛砖引玉吧!

《五年级数学教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式